Tag Archives: Climate change kills Antarctica’s ancient moss beds

The Polar Plantscape Is Changing Rapidly

As the Anthropocene climate changes accelerate, we are seeing life forms (with the exception of humans) responding to the changing conditions.  Animals are moving uphill and northward, following the warming trends.

At the same time, plants are “migrating” and adapting.  Oak trees and other species are “moving” north, inhabiting areas that were previously too cold, and dying out in over heated southern ranges.

Even in polar regions, the inhabitants are adapting to the melting ice and warming air.  Penguins seem to be shifting nesting grounds, presumably following changing conditions.

This fall two studies report on how the plant (or at least non-animal) life is “moving” in the Arctic and Antarctic.


Until recently, some areas of Antarctica had large areas of moss that was covered by snow and ice in the winter.  In the summer, the cover melted these beds were exposed to the sun.  In this very wet, very sunny situation, the moss greened and thrived.  In fact, the beds seem to have persisted in the same location for years, probably centuries.

These are the “miniature old growth forests” of East Antarctica.  They are also home to many (small) animals and other species such as fungus.

A new report shows that some of these beds are rapidly dying out, apparently because the climate is drying out [4].  (Growing moss is all about water.)  Other more tolerant mosses are invading the area.

Tiny as they are, this rapid change to the “moss forest” is a huge ecological shift.

At the same time, another study reports that in northern regions tundra plants such as grasses have grown taller, and larger species are moving north [2].  In fact, getting on twice as tall.  There are no trees in these harsh locations, so these ankle high species are the “miniature old growth forests” of the tundra.  And they are bulking up in response to warmer, wetter conditions.

compare it to the ecosystems around your house like the forest nearby – if you imagined that forest getting twice as tall; that is a pretty dramatic change,” (Isla Myers-Smith, quoted in [1])

The presence of these taller plants might create a positive feedback, insulating the soil (e.g., by trapping blowing snow) and lowering the albedo (due to foliage sticking above the snow).  These effects could contribute to more melting of ice and permafrost, further warming the area.


Not only are the old growth forests shrinking and dying, these “miniature” old growths, mosses and grasses and such, are also changing rapidly.

It’s kind of a cool image, “miniature old growth forests”.


(For the record, the data is available from “Team Tundra” and the Austrailian Antarctic Data Center (AADC) )


  1. Jonathan Amos, Taller plants moving into warmer Arctic, in BBC News – Science & Environment. 2018. https://www.bbc.com/news/science-environment-45652152
  2. Anne D. Bjorkman, Isla H. Myers-Smith, Sarah C. Elmendorf, Signe Normand, Nadja Rüger, Pieter S. A. Beck, Anne Blach-Overgaard, Daan Blok, J. Hans C. Cornelissen, Bruce C. Forbes, Damien Georges, Scott J. Goetz, Kevin C. Guay, Gregory H. R. Henry, Janneke HilleRisLambers, Robert D. Hollister, Dirk N. Karger, Jens Kattge, Peter Manning, Janet S. Prevéy, Christian Rixen, Gabriela Schaepman-Strub, Haydn J. D. Thomas, Mark Vellend, Martin Wilmking, Sonja Wipf, Michele Carbognani, Luise Hermanutz, Esther Lévesque, Ulf Molau, Alessandro Petraglia, Nadejda A. Soudzilovskaia, Marko J. Spasojevic, Marcello Tomaselli, Tage Vowles, Juha M. Alatalo, Heather D. Alexander, Alba Anadon-Rosell, Sandra Angers-Blondin, Mariska te Beest, Logan Berner, Robert G. Björk, Agata Buchwal, Allan Buras, Katherine Christie, Elisabeth J. Cooper, Stefan Dullinger, Bo Elberling, Anu Eskelinen, Esther R. Frei, Oriol Grau, Paul Grogan, Martin Hallinger, Karen A. Harper, Monique M. P. D. Heijmans, James Hudson, Karl Hülber, Maitane Iturrate-Garcia, Colleen M. Iversen, Francesca Jaroszynska, Jill F. Johnstone, Rasmus Halfdan Jørgensen, Elina Kaarlejärvi, Rebecca Klady, Sara Kuleza, Aino Kulonen, Laurent J. Lamarque, Trevor Lantz, Chelsea J. Little, James D. M. Speed, Anders Michelsen, Ann Milbau, Jacob Nabe-Nielsen, Sigrid Schøler Nielsen, Josep M. Ninot, Steven F. Oberbauer, Johan Olofsson, Vladimir G. Onipchenko, Sabine B. Rumpf, Philipp Semenchuk, Rohan Shetti, Laura Siegwart Collier, Lorna E. Street, Katharine N. Suding, Ken D. Tape, Andrew Trant, Urs A. Treier, Jean-Pierre Tremblay, Maxime Tremblay, Susanna Venn, Stef Weijers, Tara Zamin, Noémie Boulanger-Lapointe, William A. Gould, David S. Hik, Annika Hofgaard, Ingibjörg S. Jónsdóttir, Janet Jorgenson, Julia Klein, Borgthor Magnusson, Craig Tweedie, Philip A. Wookey, Michael Bahn, Benjamin Blonder, Peter M. van Bodegom, Benjamin Bond-Lamberty, Giandiego Campetella, Bruno E. L. Cerabolini, F. Stuart Chapin, William K. Cornwell, Joseph Craine, Matteo Dainese, Franciska T. de Vries, Sandra Díaz, Brian J. Enquist, Walton Green, Ruben Milla, Ülo Niinemets, Yusuke Onoda, Jenny C. Ordoñez, Wim A. Ozinga, Josep Penuelas, Hendrik Poorter, Peter Poschlod, Peter B. Reich, Brody Sandel, Brandon Schamp, Serge Sheremetev and Evan Weiher, Plant functional trait change across a warming tundra biome. Nature, 562 (7725):57-62, 2018/10/01 2018. https://doi.org/10.1038/s41586-018-0563-7
  3. Victoria Gill, Climate change kills Antarctica’s ancient moss beds, in BBC News – Science & Environment. 2018. https://www.bbc.com/news/science-environment-45629395
  4. Sharon A. Robinson, Diana H. King, Jessica Bramley-Alves, Melinda J. Waterman, Michael B. Ashcroft, Jane Wasley, Johanna D. Turnbull, Rebecca E. Miller, Ellen Ryan-Colton, Taylor Benny, Kathryn Mullany, Laurence J. Clarke, Linda A. Barry, and Quan Hua, Rapid change in East Antarctic terrestrial vegetation in response to regional drying. Nature Climate Change, 8 (10):879-884, 2018/10/01 2018. https://doi.org/10.1038/s41558-018-0280-0